SSN_MLRG1 at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis Using Multiple Kernel Gaussian Process Regression Model

نویسندگان

  • Angel Deborah S
  • S. Milton Rajendram
  • T. T. Mirnalinee
چکیده

The system developed by the SSN MLRG1 team for Semeval-2017 task 5 on fine-grained sentiment analysis uses Multiple Kernel Gaussian Process for identifying the optimistic and pessimistic sentiments associated with companies and stocks. Since the comments on the same companies and stocks may display different emotions depending on time, their properities like smoothness and periodicity may vary. Our experiments show that while single Kernel Gaussian Process can learn some properties well, Multiple Kernel Gaussian Process are effective in learning the presence of different properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SSN_MLRG1 at SemEval-2017 Task 4: Sentiment Analysis in Twitter Using Multi-Kernel Gaussian Process Classifier

The SSN MLRG1 team for Semeval-2017 task 4 has applied Gaussian Process, with bag of words feature vectors and fixed rule multi-kernel learning, for sentiment analysis of tweets. Since tweets on the same topic, made at different times, may exhibit different emotions, their properties such as smoothness and periodicity also vary with time. Our experiments show that, compared to single kernel, mu...

متن کامل

ECNU at SemEval-2017 Task 5: An Ensemble of Regression Algorithms with Effective Features for Fine-Grained Sentiment Analysis in Financial Domain

This paper describes our systems submitted to the Fine-Grained Sentiment Analysis on Financial Microblogs and News task (i.e., Task 5) in SemEval-2017. This task includes two subtasks in microblogs and news headline domain respectively. To settle this problem, we extract four types of effective features, including linguistic features, sentiment lexicon features, domain-specific features and wor...

متن کامل

IBA-Sys at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News

This paper presents the details of our system IBA-Sys that participated in SemEval Task: Fine-grained sentiment analysis on Financial Microblogs and News. Our system participated in both tracks. For microblogs track, a supervised learning approach was adopted and the regressor was trained using XgBoost regression algorithm on lexicon features. For news headlines track, an ensemble of regressors...

متن کامل

DUTH at SemEval-2017 Task 5: Sentiment Predictability in Financial Microblogging and News Articles

We present the system developed by the team DUTH for the participation in Semeval-2017 task 5 Fine-Grained Sentiment Analysis on Financial Microblogs and News, in subtasks A and B. Our approach to determine the sentiment of Microblog Messages and News Statements & Headlines is based on linguistic preprocessing, feature engineering, and supervised machine learning techniques. To train our model,...

متن کامل

IITPB at SemEval-2017 Task 5: Sentiment Prediction in Financial Text

This paper reports team IITPB’s participation in the SemEval 2017 Task 5 on ‘Fine-grained sentiment analysis on financial microblogs and news’. We developed 2 systems for the two tracks. One system is based on an ensemble of Support Vector Classifier and Logistic Regression. This system relis on Distributional Thesaurus (DT), word embeddings and lexicon features to predict a continuous sentimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017